Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 64(4): 282-292, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404676

RESUMO

Amongst a cohort of 88 alkaptonuria (AKU) patients attending the United Kingdom National Alkaptonuria Centre (NAC), four unrelated patients had co-existing Parkinson's disease (PD). Two of the NAC patients developed PD before receiving nitisinone (NIT) while the other two developed overt PD during NIT therapy. NIT lowers redox-active homogentisic acid (HGA) and profoundly increases tyrosine (TYR). A further unpublished case of a Dutch patient with AKU and PD on deep brain stimulation is included in this report. A Pubmed search revealed a further five AKU patients with PD, all without NIT usage. The prevalence of PD in AKU in the NAC appears to be nearly 20-times higher than in the non-AKU population (p < 0.001) even when adjusted for age. We propose that life-long exposure to redox-active HGA may account for the higher prevalence of PD in AKU. Furthermore, the appearance of PD in AKU patients during NIT therapy may be due to unmasking dopamine deficiency in susceptible individuals, as a result of the tyrosinaemia during NIT therapy inhibiting the rate-limiting brain tyrosine hydroxylase.

2.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443717

RESUMO

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas , Ácido Homogentísico/metabolismo , Estudos Prospectivos
3.
Adv Clin Chem ; 114: 47-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268334

RESUMO

Alkaptonuria (AKU) is an ultra-rare inherited inborn error of metabolism that afflicts the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid (HGA) in the circulation, and significant excretion in urine. Clinical manifestations, typically observed from the third decade of life, are lifelong and significantly affect the quality of life. This review provides a comprehensive overview of the natural history of AKU, including clinical, biochemical and genetic perspectives. An update on the major advances on studies in murine models and human subjects, providing mechanistic insight into the molecular and biochemical processes that underlie pathophysiology and its response to treatment are presented. The impact of treatment with nitisinone is also presented with a specific emphasis on hypertyrosinemia, as uncertainty on this topic remains. Future perspectives are explored, such as novel approaches to treat hypertyrosinemia including the use of binding agents and amino acid transporter inhibitors, as well as advanced potentially curative gene and cell therapy initiatives.


Assuntos
Alcaptonúria , Tirosinemias , Humanos , Animais , Camundongos , Alcaptonúria/diagnóstico , Alcaptonúria/tratamento farmacológico , Alcaptonúria/metabolismo , Qualidade de Vida , Ácido Homogentísico/metabolismo , Tirosina/metabolismo , Tirosina/urina
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047394

RESUMO

MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-ß)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/ß-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-ßs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-ß/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.


Assuntos
MicroRNAs , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Proteínas Hedgehog/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Transdução de Sinais , Osteoblastos/metabolismo
5.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295821

RESUMO

Changes in the phenylalanine (PHE)/tyrosine (TYR) pathway metabolites before and during homogentisic acid (HGA)-lowering by nitisinone in the Suitability of Nitisinone in Alkaptonuria (AKU) 2 (SONIA 2) study enabled the magnitude of the flux in the pathway to be examined. SONIA 2 was a 48-month randomised, open-label, evaluator-blinded, parallel-group study performed in the UK, France and Slovakia recruiting patients with confirmed AKU to receive either 10 mg nitisinone or no treatment. Site visits were performed at 3 months and yearly thereafter. Results from history, photographs of eyes/ears, whole body scintigraphy, echocardiography and abdomen/pelvis ultrasonography were combined to produce the Alkaptonuria Severity Score Index (cAKUSSI). PHE, TYR, hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA metabolites were analysed by liquid chromatography/tandem mass spectrometry in 24 h urine and serum samples collected before and during nitisinone. Serum metabolites were corrected for total body water (TBW), and the sum of 24 h urine plus total body water metabolites of PHE, TYR, HPPA, HPLA and HGA were determined. The sum of urine metabolites (PHE, TYR, HPPA, HPLA and HGA) were similar pre- and peri-nitisinone. The sum of TBW metabolites and sum TBW + URINE metabolites were significantly higher peri-nitisinone (p < 0.001 for both) compared with pre-nitisinone baseline. Significantly higher concentrations of metabolites from the tyrosine metabolic pathway were observed during treatment with nitisinone. Arguments for unmasking of the ochronotic pathway and biliary elimination of HGA are put forward.

6.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295829

RESUMO

Metabolomic analyses in alkaptonuria (AKU) have recently revealed alternative pathways in phenylalanine-tyrosine (phe-tyr) metabolism from biotransformation of homogentisic acid (HGA), the active molecule in this disease. The aim of this research was to study the phe-tyr metabolic pathway and whether the metabolites upstream of HGA, increased in nitisinone-treated patients, also undergo phase 1 and 2 biotransformation reactions. Metabolomic analyses were performed on serum and urine from patients partaking in the SONIA 2 phase 3 international randomised-controlled trial of nitisinone in AKU (EudraCT no. 2013-001633-41). Serum and urine samples were taken from the same patients at baseline (pre-nitisinone) then at 24 and 48 months on nitisinone treatment (patients N = 47 serum; 53 urine) or no treatment (patients N = 45 serum; 50 urine). Targeted feature extraction was performed to specifically mine data for the entire complement of theoretically predicted phase 1 and 2 biotransformation products derived from phenylalanine, tyrosine, 4-hydroxyphenylpyruvic acid and 4-hydroxyphenyllactic acid, in addition to phenylalanine-derived metabolites with known increases in phenylketonuria. In total, we observed 13 phase 1 and 2 biotransformation products from phenylalanine through to HGA. Each of these products were observed in urine and two were detected in serum. The derivatives of the metabolites upstream of HGA were markedly increased in urine of nitisinone-treated patients (fold change 1.2-16.2) and increases in 12 of these compounds were directly proportional to the degree of nitisinone-induced hypertyrosinaemia (correlation coefficient with serum tyrosine = 0.2-0.7). Increases in the urinary phenylalanine metabolites were also observed across consecutive visits in the treated group. Nitisinone treatment results in marked increases in a wider network of phe-tyr metabolites than shown before. This network comprises alternative biotransformation products from the major metabolites of this pathway, produced by reactions including hydration (phase 1) and bioconjugation (phase 2) of acetyl, methyl, acetylcysteine, glucuronide, glycine and sulfate groups. We propose that these alternative routes of phe-tyr metabolism, predominantly in urine, minimise tyrosinaemia as well as phenylalanaemia.

7.
Metabolites ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005644

RESUMO

Nitisinone (NIT) causes tyrosinaemia and corneal keratopathy (KP), especially in men. However, the adaptation within the phenylalanine (PHE)/tyrosine (TYR) catabolic pathway during KP is not understood. The objective of this study is to assess potential differences in the PHE/TYR pathway during KP and the influence of gender in NIT-induced tyrosinaemia in alkaptonuria (AKU). Samples of serum and 24 h urine collected from patients treated with NIT during a 4-year randomized study in NIT vs. no-treatment controls (SONIA 2; Suitability Of Nitisinone In Alkaptonuria 2; EudraCT no. 2013-001633-41) at months 3 (V2), 12 (V3), 24 (V4), 36 (V5) and 48 (V6) were included in these analyses. Homogentisic acid (HGA), TYR, PHE, hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and sNIT were analysed at all time-points in serum and urine in the NIT-group. All statistical analyses were post hoc. Keratopathy occurred in 10 out of 69 AKU patients, eight of them male. Thirty-five sampling points (serum and 24 h urine) were analysed in patients experiencing KP and 272 in those with no-KP (NKP) during NIT therapy. The KP group had a lower HPLA/TYR ratio and a higher TYR/PHE ratio compared with the NKP group (p < 0.05 for both). There were 24, 45, 100 and 207 sampling points (serum and 24 h urine) in the NIT group which were pre-NIT female, pre-NIT male, NIT female and NIT male, respectively. The PHE/TYR ratio and the HPLA/TYR ratio were lower in males (p < 0.001 and p < 0.01, respectively). In the KP group and in the male group during NIT therapy, adaptive responses to minimise TYR formation were impaired compared to NKP group and females, respectively.

8.
Metabolites ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736410

RESUMO

Background: Nitisinone-induced hypertyrosinaemia is well documented in Alkaptonuria (AKU), and there is uncertainty over whether it may contribute to a decline in cognitive function and/or mood by altering neurotransmitter metabolism. The aim of this work was to evaluate the impact of nitisinone on the cerebrospinal fluid (CSF) metabolome in a murine model of AKU, with a view to providing additional insight into metabolic changes that occur following treatment with nitisinone. Methods: 17 CSF samples were collected from BALB/c Hgd−/− mice (n = 8, treated with nitisinone­4 mg/L and n = 9, no treatment). Samples were diluted 1:1 with deionised water and analysed using a 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, Cheadle, UK). Raw data were processed using a targeted feature extraction algorithm and an established in-house accurate mass retention time database. Matched entities (±10 ppm theoretical accurate mass and ±0.3 min retention time window) were filtered based on their frequency and variability. Experimental groups were compared using a moderated t-test with Benjamini−Hochberg false-discovery rate adjustment. Results: L-Tyrosine, N-acetyl-L-tyrosine, γ-glutamyl-L-tyrosine, p-hydroxyphenylacetic acid, and 3-(4-hydroxyphenyl)lactic acid were shown to increase in abundance (log2 fold change 2.6−6.9, 3/5 were significant p < 0.05) in the mice that received nitisinone. Several other metabolites of interest were matched, but no significant differences were observed, including the aromatic amino acids phenylalanine and tryptophan, and monoamine metabolites adrenaline, 3-methoxy-4-hydroxyphenylglycol, and octopamine. Conclusions: Evaluation of the CSF metabolome of a murine model of AKU revealed a significant increase in the abundance of a limited number of metabolites following treatment with nitisinone. Further work is required to understand the significance of these findings and the mechanisms by which the altered metabolite abundances occur.

9.
Genes Dis ; 9(4): 1129-1142, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685462

RESUMO

Alkaptonuria (AKU) is an inherited disorder of tyrosine metabolism caused by lack of active enzyme homogentisate 1,2-dioxygenase (HGD). The primary consequence of HGD deficiency is increased circulating homogentisic acid (HGA), the main agent in the pathology of AKU disease. Here we report the first metabolomic analysis of AKU homozygous Hgd knockout (Hgd -/-) mice to model the wider metabolic effects of Hgd deletion and the implication for AKU in humans. Untargeted metabolic profiling was performed on urine from Hgd -/- AKU (n = 15) and Hgd +/- non-AKU control (n = 14) mice by liquid chromatography high-resolution time-of-flight mass spectrometry (Experiment 1). The metabolites showing alteration in Hgd -/- were further investigated in AKU mice (n = 18) and patients from the UK National AKU Centre (n = 25) at baseline and after treatment with the HGA-lowering agent nitisinone (Experiment 2). A metabolic flux experiment was carried out after administration of 13C-labelled HGA to Hgd -/-(n = 4) and Hgd +/-(n = 4) mice (Experiment 3) to confirm direct association with HGA. Hgd -/- mice showed the expected increase in HGA, together with unexpected alterations in tyrosine, purine and TCA-cycle pathways. Metabolites with the greatest abundance increases in Hgd -/- were HGA and previously unreported sulfate and glucuronide HGA conjugates, these were decreased in mice and patients on nitisinone and shown to be products from HGA by the 13C-labelled HGA tracer. Our findings reveal that increased HGA in AKU undergoes further metabolism by mainly phase II biotransformations. The data advance our understanding of overall tyrosine metabolism, demonstrating how specific metabolic conditions can elucidate hitherto undiscovered pathways in biochemistry and metabolism.

10.
JIMD Rep ; 63(1): 80-92, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028273

RESUMO

BACKGROUND: Outcomes from studies employing nitisinone 10 mg and 2 mg in alkaptonuria were compared. PATIENTS AND METHODS: Sixty-nine patients in each of the nitisinone (10 mg daily) and controls of suitability of nitisinone in alkaptonuria 2 (SONIA 2), as well as 37 and 23 in nitisinone (2 mg daily) and control cohorts at the National Alkaptonuria Centre (NAC), respectively, were followed up for 4 years. Severity of alkaptonuria (AKU) was assessed by the AKU Severity Score Index (AKUSSI). 24-h urine homogentisic acid (uHGA24), serum HGA (sHGA), serum tyrosine (sTYR) and serum nitisinone (sNIT) were also analysed at each time point. Dietetic support was used in the NAC, but not in SONIA 2. Safety outcomes were also compared. All statistical analyses were post hoc. RESULTS: The slope of the AKUSSI was 0.55, 0.19, 0.30, and 0.06 per month in the control NAC, nitisinone NAC, control SONIA 2, and nitisinone SONIA 2 cohorts, respectively. The intersection of the slopes on the x-axis was -132, -411, -295, and - 1460 months, respectively. The control and nitisinone slope comparisons were statistically significant both in the NAC (p < 0.001) and the SONIA 2 (p < 0.001). Corneal keratopathy occurred in 3 and 10 patients in the NAC and SONIA 2, respectively. DISCUSSION: The nitisinone 10 mg dose decreased disease progression more than the 2 mg dose although the incidence of corneal keratopathy was 14.5% and 4.9%, respectively. CONCLUSION: Nitisinone 10 mg decreased urine and serum HGA, increased serum tyrosine, and decreased disease progression more than 2 mg. Low-protein dietetic support may be needed to mitigate tyrosinaemia following nitisinone. HIGHLIGHTS: Nitisinone 10 mg apparently slows alkaptonuria disease progression more than 2 mg in adults.Corneal keratopathy during nitisinone therapy was more common in men.Serum nitisinone concentrations increased significantly over time.Nitisinone may inhibit cytochrome P450 self catabolism.

11.
Lancet Diabetes Endocrinol ; 8(9): 762-772, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822600

RESUMO

BACKGROUND: Alkaptonuria is a rare, genetic, multisystem disease characterised by the accumulation of homogentisic acid (HGA). No HGA-lowering therapy has been approved to date. The aim of SONIA 2 was to investigate the efficacy and safety of once-daily nitisinone for reducing HGA excretion in patients with alkaptonuria and to evaluate whether nitisinone has a clinical benefit. METHODS: SONIA 2 was a 4-year, open-label, evaluator-blind, randomised, no treatment controlled, parallel-group study done at three sites in the UK, France, and Slovakia. Patients aged 25 years or older with confirmed alkaptonuria and any clinical disease manifestations were randomly assigned (1:1) to receive either oral nitisinone 10 mg daily or no treatment. Patients could not be masked to treatment due to colour changes in the urine, but the study was evaluator-blinded as far as possible. The primary endpoint was daily urinary HGA excretion (u-HGA24) after 12 months. Clinical evaluation Alkaptonuria Severity Score Index (cAKUSSI) score was assessed at 12, 24, 36, and 48 months. Efficacy variables were analysed in all randomly assigned patients with a valid u-HGA24 measurement at baseline. Safety variables were analysed in all randomly assigned patients. The study was registered at ClinicalTrials.gov (NCT01916382). FINDINGS: Between May 7, 2014, and Feb 16, 2015, 139 patients were screened, of whom 138 were included in the study, with 69 patients randomly assigned to each group. 55 patients in the nitisinone group and 53 in the control group completed the study. u-HGA24 at 12 months was significantly decreased by 99·7% in the nitisinone group compared with the control group (adjusted geometric mean ratio of nitisinone/control 0·003 [95% CI 0·003 to 0·004], p<0·0001). At 48 months, the increase in cAKUSSI score from baseline was significantly lower in the nitisinone group compared with the control group (adjusted mean difference -8·6 points [-16·0 to -1·2], p=0·023). 400 adverse events occurred in 59 (86%) patients in the nitisinone group and 284 events occurred in 57 (83%) patients in the control group. No treatment-related deaths occurred. INTERPRETATION: Nitisinone 10 mg daily was well tolerated and effective in reducing urinary excretion of HGA. Nitisinone decreased ochronosis and improved clinical signs, indicating a slower disease progression. FUNDING: European Commission Seventh Framework Programme.


Assuntos
Alcaptonúria/tratamento farmacológico , Alcaptonúria/metabolismo , Cicloexanonas/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Internacionalidade , Nitrobenzoatos/administração & dosagem , Adulto , Idoso , Alcaptonúria/diagnóstico , Esquema de Medicação , Feminino , Ácido Homogentísico/metabolismo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Resultado do Tratamento
12.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32219972

RESUMO

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Assuntos
Alcaptonúria/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Pigmentação , Espectroscopia de Ressonância de Spin Eletrônica , Ácido Homogentísico/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Oxirredução , Pigmentos Biológicos/química
13.
J Inherit Metab Dis ; 43(5): 1014-1023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32083330

RESUMO

For over two decades, nitisinone (NTBC) has been successfully used to manipulate the tyrosine degradation pathway and save the lives of many children with hereditary tyrosinaemia type 1. More recently, NTBC has been used to halt homogentisic acid accumulation in alkaptonuria (AKU) with evidence suggesting its efficacy as a disease modifying agent. NTBC-induced hypertyrosinaemia has been associated with cognitive impairment and potentially sight-threatening keratopathy. In the context of a non-lethal condition (ie, AKU), these serious risks call for an evaluation of the wider impact of NTBC on the tyrosine pathway. We hypothesised that NTBC increases the tyrosine pool size and concentrations in tissues. In AKU mice tyrosine concentrations of tissue homogenates were measured before and after treatment with NTBC. In humans, pulse injection with l-[13 C9 ]tyrosine and l-[d8 ]phenylalanine was used along with compartmental modelling to estimate the size of tyrosine pools before and after treatment with NTBC. We found that NTBC increased tyrosine concentrations in murine tissues by five to nine folds. It also significantly increased the tyrosine pool size in humans (P < .001), suggesting that NTBC increases tyrosine not just in serum but also in tissues (ie, acquired tyrosinosis). This study provides, for the first time, the experimental proof for the magnitude of NTBC-related acquired tyrosinosis which should be overcome to ensure the safe use of NTBC in AKU.


Assuntos
Alcaptonúria/tratamento farmacológico , Alcaptonúria/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/etiologia , Cicloexanonas/farmacologia , Nitrobenzoatos/farmacologia , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Fenilalanina/metabolismo , Tirosina/metabolismo , Adulto Jovem
14.
J Inherit Metab Dis ; 43(4): 737-747, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31609457

RESUMO

The clinical effects of alkaptonuria (AKU) are delayed and ageing influences disease progression. Morbidity of AKU is secondary to high circulating homogentisic acid (HGA) and ochronosis. It is not known whether HGA is produced by or processed in the kidney in AKU. Data from AKU patients from four studies were merged to form a single AKU group. A control group of non-AKU subjects was generated by merging data from two non-AKU studies. Data were used to derive renal clearance and fractional excretion (FE) ratios for creatinine, HGA, phenylalanine (PHE) and tyrosine (TYR) using standard calculations, for comparison between the AKU and the control groups. There were 225 AKU patients in the AKU group and 52 in the non-AKU control group. Circulating HGA increased with age (P < 0.001), and was significantly associated with decreased HGA clearance (CLHGA ) (P < 0.001) and FEHGA (P < 0.001). CLHGA and FEHGA were increased beyond the theoretical maximum renal plasma flow, confirming renal production and emphasising the greater contribution of net tubular secretion than glomerular filtration to renal elimination of HGA. The kidneys are crucial to elimination of HGA. Elimination of HGA is impaired with age resulting in worsening disease over time. The kidney is an important site for production of HGA. Tubular secretion of HGA contributes more to elimination of HGA in AKU than glomerular filtration.


Assuntos
Alcaptonúria/metabolismo , Taxa de Filtração Glomerular , Ácido Homogentísico/metabolismo , Rim/metabolismo , Ocronose/etiologia , Adulto , Alcaptonúria/fisiopatologia , Estudos de Casos e Controles , Creatinina/metabolismo , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Ocronose/fisiopatologia , Fenilalanina/metabolismo , Fatores Sexuais , Tirosina/metabolismo
15.
Int J Mol Sci ; 20(19)2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590453

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos
16.
Hum Mol Genet ; 28(23): 3928-3939, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600782

RESUMO

Alkaptonuria is an inherited disease caused by homogentisate 1,2-dioxygenase (HGD) deficiency. Circulating homogentisic acid (HGA) is elevated and deposits in connective tissues as ochronotic pigment. In this study, we aimed to define developmental and adult HGD tissue expression and determine the location and amount of gene activity required to lower circulating HGA and rescue the alkaptonuria phenotype. We generated an alkaptonuria mouse model using a knockout-first design for the disruption of the HGD gene. Hgd tm1a -/- mice showed elevated HGA and ochronosis in adulthood. LacZ staining driven by the endogenous HGD promoter was localised to only liver parenchymal cells and kidney proximal tubules in adulthood, commencing at E12.5 and E15.5 respectively. Following removal of the gene trap cassette to obtain a normal mouse with a floxed 6th HGD exon, a double transgenic was then created with Mx1-Cre which conditionally deleted HGD in liver in a dose dependent manner. 20% of HGD mRNA remaining in liver did not rescue the disease, suggesting that we need more than 20% of liver HGD to correct the disease in gene therapy. Kidney HGD activity which remained intact reduced urinary HGA, most likely by increased absorption, but did not reduce plasma HGA nor did it prevent ochronosis. In addition, downstream metabolites of exogenous 13C6-HGA, were detected in heterozygous plasma, revealing that hepatocytes take up and metabolise HGA. This novel alkaptonuria mouse model demonstrated the importance of targeting liver for therapeutic intervention, supported by our observation that hepatocytes take up and metabolise HGA.


Assuntos
Alcaptonúria/enzimologia , Homogentisato 1,2-Dioxigenase/genética , Ácido Homogentísico/metabolismo , Fígado/enzimologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Homogentisato 1,2-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas
17.
JIMD Rep ; 48(1): 67-74, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392115

RESUMO

BACKGROUND: The homogentisic acid-lowering therapy nitisinone is being evaluated for the treatment of alkaptonuria (AKU) at the National Centre for AKU. Beyond hypertyrosinemia, the wider metabolic consequences of its use are largely unknown. The aim of this work was to evaluate the impact of nitisinone on the serum metabolome of patients with AKU after 12 and 24 months of treatment. METHODS: Deproteinized serum from 25 patients with AKU (mean age[±SD] 51.1 ± 14.9 years, 12 male) was analyzed using the 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, UK). Raw data were processed using a batch targeted feature extraction algorithm and an accurate mass retention time database containing 469 intermediary metabolites (MW 72-785). Matched entities (±10 ppm theoretical accurate mass and ±0.3 minutes retention time window) were filtered based on their frequency and variability (<25% CV) in group quality control samples, and repeated measures statistical significance analysis with Benjamini-Hochberg false discovery rate adjustment was used to assess changes in metabolite abundance. RESULTS: Eight metabolites increased in abundance (log2 fold change [FC] 2.1-15.2, P < .05); 7 of 8 entities were related to tyrosine metabolism, and 13 decreased in abundance (log2 FC 1.5-15.5, P < .05); including entities related to tyrosine (n = 2), tryptophan (n = 3), xanthine (n = 2), and citric acid cycle metabolism (n = 2). CONCLUSIONS: Evaluation of the serum metabolome of patients with AKU showed a significant difference in the abundance of several metabolites following treatment with nitisinone, including a number that have not been previously reported; several of these were not related to the tyrosine metabolic pathway. SYNOPSIS: Nitisinone therapy has a significant impact on several metabolites beyond the tyrosine metabolic pathway, several of which appear to be related to the redox state of the cell.

18.
J Inherit Metab Dis ; 42(5): 776-792, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31282009

RESUMO

Ochronosis is the process in alkaptonuria (AKU) that causes all the debilitating morbidity. The process involves selective deposition of homogentisic acid (HGA)-derived pigment in tissues altering the properties of these tissues, leading to their failure. Some tissues like cartilage are more easily affected by ochronosis while others such as the liver and brain are unaffected for reasons that are still not understood. In vitro and mouse models of ochronosis have confirmed the dose relationships between HGA and ochronosis and also their modulation by p-hydroxyphenylpyruvate dioxygenase inhibition. Ochronosis cannot be fully reversed and is a key factor in influencing treatment decisions. Earlier detection of ochronosis preferably by noninvasive means is desirable. A cause-effect relationship between HGA and ochronosis is discussed. The similarity in AKU and familial hypercholesterolaemia is explored and lessons learnt. More research is needed to more fully understand the crucial nature of ochronosis.


Assuntos
Alcaptonúria/patologia , Condrócitos/citologia , Ácido Homogentísico/metabolismo , Ocronose/patologia , Alcaptonúria/metabolismo , Animais , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Humanos , Camundongos , Oxirredução , Pigmentação
19.
Clin Chem ; 65(4): 530-539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782595

RESUMO

BACKGROUND: Identification of unknown chemical entities is a major challenge in metabolomics. To address this challenge, we developed a comprehensive targeted profiling strategy, combining 3 complementary liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) techniques and in-house accurate mass retention time (AMRT) databases established from commercial standards. This strategy was used to evaluate the effect of nitisinone on the urinary metabolome of patients and mice with alkaptonuria (AKU). Because hypertyrosinemia is a known consequence of nitisinone therapy, we investigated the wider metabolic consequences beyond hypertyrosinemia. METHODS: A total of 619 standards (molecular weight, 45-1354 Da) covering a range of primary metabolic pathways were analyzed using 3 liquid chromatography methods-2 reversed phase and 1 normal phase-coupled to QTOF-MS. Separate AMRT databases were generated for the 3 methods, comprising chemical name, formula, theoretical accurate mass, and measured retention time. Databases were used to identify chemical entities acquired from nontargeted analysis of AKU urine: match window theoretical accurate mass ±10 ppm and retention time ±0.3 min. RESULTS: Application of the AMRT databases to data acquired from analysis of urine from 25 patients with AKU (pretreatment and after 3, 12, and 24 months on nitisinone) and 18 HGD -/- mice (pretreatment and after 1 week on nitisinone) revealed 31 previously unreported statistically significant changes in metabolite patterns and abundance, indicating alterations to tyrosine, tryptophan, and purine metabolism after nitisinone administration. CONCLUSIONS: The comprehensive targeted profiling strategy described here has the potential of enabling discovery of novel pathways associated with pathogenesis and management of AKU.


Assuntos
Alcaptonúria/metabolismo , Cicloexanonas/farmacologia , Metaboloma/efeitos dos fármacos , Nitrobenzoatos/farmacologia , Idoso , Alcaptonúria/tratamento farmacológico , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida/estatística & dados numéricos , Bases de Dados de Compostos Químicos , Feminino , Técnicas de Silenciamento de Genes , Homogentisato 1,2-Dioxigenase/genética , Humanos , Masculino , Espectrometria de Massas/métodos , Espectrometria de Massas/estatística & dados numéricos , Metabolômica/métodos , Camundongos , Pessoa de Meia-Idade , Fenótipo
20.
BMC Neurol ; 17(1): 153, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789629

RESUMO

BACKGROUND: Bi-allelic mutations in the genes Parkin (PARK2), PINK1 (PARK6) and DJ-1 (PARK7) are established causes of autosomal recessive early-onset Parkinson's Disease (EOPD). PINK1 mutations are the second commonest cause of EOPD. Specific mutations may be relatively common in certain populations because of a founder effect. Homozygous p.A217D PINK1 mutations were previously shown to cause EOPD in a large Sudanese kindred. CASE PRESENTATION: Here we report the segregation of homozygous PINK1 p.A217D mutations in a family originating in Morocco with a history of parental consanguinity. From the clinical information available for the index case, the phenotype of mild, slowly-progressive Parkinsonism is consistent with previous reports of p.A217D disease and of PINK1 disease phenotype more generally. The reported features of early prominent lower-limb symptoms and gait disturbance with asymmetrical onset are more frequent among PINK1 disease cases. CONCLUSIONS: Together, reports of p.A217D in families of Moroccan and Sudanese origin suggest that p.A217D is a North African mutation due to a founder effect. Wider genetic analyses of EOPD in North Africa would be useful to estimate the prevalence of Parkinsonism caused by PINK1 p.A217D. In the absence of bi-allelic Parkin mutations, PINK1 mutations should be considered in cases with evidence of autosomal recessive inheritance of EOPD and presentation of atypical features such as early lower-limb symptoms and gait disturbance with asymmetrical onset, which appear to be common in Mendelian EOPD.


Assuntos
Transtornos Parkinsonianos/genética , Proteínas Quinases/genética , Idade de Início , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Masculino , Marrocos , Mutação , Fenótipo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...